منابع مشابه
Reflexive Ideals in Iwasawa Algebras
Let G be a torsionfree compact p-adic analytic group. We give sufficient conditions on p and G which ensure that the Iwasawa algebra ΩG of G has no non-trivial two-sided reflexive ideals. Consequently, these conditions imply that every nonzero normal element in ΩG is a unit. We show that these conditions hold in the case when G is an open subgroup of SL2(Zp) and p is arbitrary. Using a previous...
متن کاملOn reflexive subobject lattices and reflexive endomorphism algebras
In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category Set of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.
متن کاملThe Tensor Product Problem for Reflexive Algebras
It was observed by Gilfeather, Hopenwasser, and Larson in [1] that Tomita's commutation formula for tensor products of von Neumann algebras can be rewritten in a way that makes sense for tensor products of arbitrary reflexive algebras. The tensor product problem for reflexive algebras is to decide for which pairs of reflexive algebras this tensor product formula is valid. Recall that a subalgeb...
متن کاملSome Problems concerning Reflexive Operator Algebras
We discuss below some problems concerning a certain class of algebras of operators on complex Banach space. Each algebra of the class arises from a lattice of subspaces of the underlying space (in a way that will soon be made precise) and most of the problems are of the fonn: find conditions, additional to those specified a priori, on the lattice of subspaces, which are both necessary and suffi...
متن کاملMorita Type Equivalences and Reflexive Algebras
Two unital dual operator algebras A,B are called ∆-equivalent if there exists an equivalence functor F : AM → BM which “extends” to a ∗−functor implementing an equivalence between the categories ADM and BDM. Here AM denotes the category of normal representations of A and ADM denotes the category with the same objects as AM and ∆(A)-module maps as morphisms (∆(A) = A ∩A ). We prove that any such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1988
ISSN: 0024-3795
DOI: 10.1016/0024-3795(88)90133-4